Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria.
نویسندگان
چکیده
Oxidation of succinate to fumarate is an energetically difficult step in the biochemical pathway of propionate oxidation by syntrophic methanogenic cultures. Therefore, the effect of fumarate on propionate oxidation by two different propionate-oxidizing cultures was investigated. When the methanogens in a newly enriched propionate-oxidizing methanogenic culture were inhibited by bromoethanesulfonate, fumarate could act as an apparent terminal electron acceptor in propionate oxidation. C-nuclear magnetic resonance experiments showed that propionate was carboxylated to succinate while fumarate was partly oxidized to acetate and partly reduced to succinate. Fumarate alone was fermented to succinate and CO(2). Bacteria growing on fumarate were enriched and obtained free of methanogens. Propionate was metabolized by these bacteria when either fumarate or Methanospirillum hungatii was added. In cocultures with Syntrophobacter wolinii, such effects were not observed upon addition of fumarate. Possible slow growth of S. wolinii on fumarate could not be demonstrated because of the presence of a Desulfovibrio strain which grew rapidly on fumarate in both the absence and presence of sulfate.
منابع مشابه
Substrate‐dependent transcriptomic shifts in Pelotomaculum thermopropionicum grown in syntrophic co‐culture with Methanothermobacter thermautotrophicus
Pelotomaculum thermopropionicum is a syntrophic propionate-oxidizing bacterium that catalyses the intermediate bottleneck step of the anaerobic-biodegradation process. As it thrives on a very small energy conserved by propionate oxidation under syntrophic association with a methanogen, its catabolic pathways and regulatory mechanisms are of biological interest. In this study, we constructed hig...
متن کاملEnrichment of Thermophilic Propionate-Oxidizing Bacteria in Syntrophy with Methanobacterium thermoautotrophicum or Methanobacterium thermoformicicum.
Thermophilic propionate-oxidizing, proton-reducing bacteria were enriched from the granular methanogenic sludge of a bench-scale upflow anaerobic sludge bed reactor operated at 55 degrees C with a mixture of volatile fatty acids as feed. Thermophilic hydrogenotrophic methanogens had a high decay rate. Therefore, stable, thermophilic propionate-oxidizing cultures could not be obtained by using t...
متن کاملReconstruction and regulation of the central catabolic pathway in the thermophilic propionate-oxidizing syntroph Pelotomaculum thermopropionicum.
Obligate anaerobic bacteria fermenting volatile fatty acids in syntrophic association with methanogenic archaea share the intermediate bottleneck step in organic-matter decomposition. These organisms (called syntrophs) are biologically significant in terms of their growth at the thermodynamic limit and are considered to be the ideal model to address bioenergetic concepts. We conducted genomic a...
متن کاملEnergetics of syntrophic fatty acid oxidation
Fatty acids are key intermediates in methanogenic degradation of organic matter in sediments as well as in anaerobic reactors. Conversion of butyrate or propionate to acetate, (CO2), and hydrogen is endergonic under standard conditions, and becomes possible only at low hydrogen concentrations (10 4--10-5 bar). A model of energy sharing between fermenting and methanogenic bacteria attributes a m...
متن کاملSyntrophobacter sulfatireducens sp. nov., a novel syntrophic, propionate-oxidizing bacterium isolated from UASB reactors.
Two obligate anaerobes, TB8106(T) and WZH410, which degraded propionate in syntrophic association with methanogens, were isolated from two upflow anaerobic sludge blanket reactors, one treating brewery wastewater and the other bean curd wastewater. The strains were Gram-negative, non-spore-forming and non-motile. Cells were egg-shaped, with a size of 1.0-1.3 x 1.8-2.2 microm. Growth was observe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 59 4 شماره
صفحات -
تاریخ انتشار 1993